
 Meteora Dynamic Vaults - The Yield Layer for Solana
 Andrew Nguyen, Yee Guan Tian, Dionis Chiua, Meow

 Meteora

 WIP, Updated Feb 2023

 1 Introduction
 Users enjoy custodial wallets offered by centralized cryptocurrency exchanges for its
 convenience. However, they have no control over their funds and it is not always transparent
 what these businesses do with their assets. Holding assets in decentralized wallets is
 powerful, as it allows one to have full control over their funds. However decentralized finance
 (DeFi) is fraught with challenges; earning yield on their assets exposes the funds to risks
 such as hacks or rug-pulls when they deposit into another protocol. Yield also varies greatly
 between platforms; constant monitoring and rebalancing of funds is needed to optimize
 returns.

 It is not possible for the average user to stay ahead of yield changes and perform risk
 management all the time, automation is needed. However, building this automation is
 non-trivial; it involves integration with multiple yield generating platforms and executing
 allocation strategies that protect liquidity while trying to earn the best-case yield. There are
 also other factors to consider, such as fund accessibility and mitigation of risks of connected
 protocols.

 In this paper, we present Meteora Dynamic Vaults - The Yield Layer for Solana. This
 comprises an end-to-end risk management framework of optimising yield, mitigating lending
 protocols risks, and maintaining full principal liquidity.

 We also introduce Hermes - our vault keeper program, which consistently monitors annual
 percentage yield (APY), amount of reserves available and utilization rate of each and every
 lending pool that user funds are deposited in, rebalancing between them for optimized yield
 while preserving liquidity.

 The benefits of the vaults are not limited only to users, but also extends to that of
 decentralized applications (dApps), decentralized autonomous organizations (DAOs) and
 protocols, where their treasuries can be sizeable. The vaults have been designed to be
 easily integratable through a straightforward SDK, forming a layer for anyone with passive
 liquidity to connect to.

 We believe that the vaults can serve a critical role as the yield layer for all of Solana, where
 users and protocols can connect easily with lending protocols, enabling all assets in the
 ecosystem to grow and earn yield safely while preserving liquidity.

 1

 2 Key Challenges & How Meteora Solves Them
 We will examine the key challenges that Meteora Dynamic Vaults are designed to solve.

 2.1 Challenges faced by users
 Users are unable to consistently monitor their funds 24/7. Funds are not optimized for yield
 as they do not always have all information at hand, to determine which lending protocols will
 give them the most optimal yield. When a black swan event happens, they cannot react fast
 enough to withdraw funds, especially if it happens during the time they are offline.

 2.2 Challenges faced by protocols, wallets and treasuries
 Like users, assets kept on protocols, wallets and treasuries are generally not optimized due
 to the difficulty of aggregating the most optimal yield. This leads to them losing out on
 opportunities to generate more yield for the assets. Protocols also need to rely heavily on
 giving out their own tokens for liquidity mining (LM) rewards to attract liquidity providers
 (LPs), which is not sustainable in the long run.

 Designing their own yield aggregator and monitoring system that optimizes yield while
 keeping the funds safe, involves many parameters such as integration and lending protocol
 assessment. This is resource intensive and time consuming to build, and not the core
 competency of this category of liquidity holders.

 2.3 How Meteora Solves The Challenges
 Meteora comprises an end-to-end risk management framework of optimising yield, mitigating
 lending protocols risks, and maintaining full principal liquidity. The vaults have done the work
 of integrating with lending protocols and their lending, allowing for real-time yield
 optimization. We now have over 50 lending reserves connected, across 6 protocols at the
 time of writing.

 Our keeper program is designed to search for the best yield amongst connected lending
 protocols and rebalance allocations across them. To keep funds safe and maintain liquidity
 of deposited amounts, it monitors 24/7 for lending pool utilization rates and reserves levels of
 the protocols, withdrawing funds whenever the predetermined thresholds are reached.

 Through maximum allocation, determined via a security matrix covered in section 4.3.3,
 Meteora manages risk across lending protocols by ensuring that the vault allocations are
 spread out.

 To extend these benefits to advanced users, Meteora comes with a straightforward SDK and
 library of pre-built modules and code samples, for rapid app development and plug-and-play.

 2

 3 Design Goals
 The goal of Meteora Dynamic Vaults is to solve the problems discussed above. Design
 principles include:

 3.1 Security and safety of principals
 Principals are safe at any given point in time; they can only be deposited into trusted and
 decentralized protocols for yield generation. The keeper program only stores the logic to find
 optimal yield allocations and limits the fund flows from the vaults to the protocols, it is unable
 to access the funds or claim principals. We seek to upgrade the authority for decisions
 around lending protocols integration and allocations to the decentralized Autonomous
 Organization (DAO).

 3.2 Full liquidity at all times
 Deposited assets must be liquid and accessible at all times, where users can withdraw funds
 at will. The vault’s total deposit amount is always checked against the amount of reserves
 left in the lending platform; if the liquidity reserve in the pool is less than the predetermined
 threshold, the vault will proceed to withdraw from the pool to ensure that there will be
 sufficient liquidity for user withdrawals.

 3.3 Most optimized yield returns
 Vault program must be able to monitor and calculate yield variations across all connected
 lending platforms, and dynamically allocate and rebalance assets to the one with the highest
 returns. Annual percentage rate (APR) of a lending pool depends on various factors -
 borrowing amount, depositing amount and the interest rate model. Deposit APR decreases
 when we deposit in a lending pool because the borrowing interest is shared with other
 depositors. The algorithm to find optimal yield allocation must be able to compare and find
 the best APR amongst the platforms for a given deposit sum.

 3.4 Ease of integration and usage
 The vaults and SDK needs to be straightforward and easy for any users or protocols, to
 utilize and build a range of applications on our system. This includes full guides, code
 examples and an API to help anyone connect to the vaults and gain access to all integrated
 lending reserves easily. We want to make the vaults the yield infrastructure for all of Solana.

 3.5 Event monitoring and tracking
 Lending pool APY, utilization rates, reserve levels are monitored continuously for better yield
 opportunities and risk management. Solana’s composability, speed and low transaction fees
 provide on-chain event monitoring benefits that exceed any other blockchain, and allows us
 to achieve the design principles set out above.

 3

 4 System Design

 We begin with an overview of the vaults program, alongside with the key components and
 their detailed working. We will introduce our rebalance crank mechanism as well as our
 design for Sandwich Attack prevention. Next, we will do a deep dive into Hermes - our vault
 keeper program, and how it finds optimal yield allocations while mitigating risks for the funds.
 We will round off the section with the performance fee calculations.

 4.1 System Overview
 Meteora Dynamic Vaults allow users and integrated protocols to deposit and/or withdraw
 assets from the vault program any time. Deposited assets are distributed to various lending
 protocols like Solend & Tulip, with maximum allocation based on a combination of yield
 percentages and risk mitigation strategies around protocol audit, insurance coverage and
 open source status.

 Fig 1: Meteora Dynamic Vaults overview

 4

 The system will consist of 3 main components:

 1. Vault
 Each Vault in the infra layer stores single token assets, e.g. USDC or SOL, and the majority
 of the assets will be allocated to various lending protocols to earn yield. The common tokens
 used in each connecting protocol, AMM or wallet will be stored in a single vault, e.g. USDC
 from AMM and the wallet will be held in the USDC vault. Users and protocols can deposit
 liquidity to each Vault directly through a simple interface.

 2. Keeper - Hermes
 We’ve created an off-chain keeper - Hermes to manage more complex logic and operations
 i.e. lending protocol monitoring and calculating optimal liquidity allocation across lending
 platforms etc. There are 3 main operations handled by Hermes:

 Yield Optimizer - Hermes will calculate the liquidity allocation across the lending platforms
 that will generate the most optimal overall APY for the vault. The calculation will require key
 data from the various lending platforms i.e. Deposit APY, utilization rate, liquidity in pool etc.
 This process will repeat once every few minutes, and if there is a delta between the new
 allocation and the current one, a rebalance crank will be sent to the vault to trigger deposits
 and withdrawals to/from the lending platforms.

 Key Metrics Tracker - As indicated above, the calculation of liquidity allocation requires
 various key data such as deposit APY and liquidity in pool from the lending platforms. The
 tracker will consistently monitor, track and store these information in the system for the use
 in calculations and for future references. These data are also exposed to potential
 integrators for them to display on their UIs or to support their own calculations or logics.

 Risk Monitoring - Hermes also runs a risk monitoring service to track utilization rates and
 reserve levels of lending protocols to safeguard user assets, ready to withdraw liquidity when
 thresholds are reached. For example, if the utilization rate of a lending pool is above 80%,
 Hermes will send a transaction to the vault to trigger a full liquidity withdrawal from the pool.
 All deposits into the pool will also be stopped for 12 hours, giving us sufficient time to
 investigate and assess if we will continue deposits or stop them completely until further
 notice. Full details of the various mechanisms are discussed in section 4.3.3.

 3. SDK Module (Integration APIs)
 To make it easy for DApps and Protocols like AMMs and wallets to integrate with our
 Dynamic Yield Layer, we have created a straightforward SDK and are building up an entire
 library of pre-built modules and code samples for rapid app development and plug-and-play.

 The liquidity in the protocols can be deposited into or withdrawn from the vaults directly via
 simple API calls. The vaults’ yield can be distributed back to the LPs of the integrated
 protocols.

 5

 4.1.1 Definitions & Notation

 This section describes and defines the notations used throughout this paper.

 Name Variable Name Notation
 (if any)

 Function

 Total amount in
 vault

 vault.total_amount t The total liquidity of the
 vault; equivalent to the
 sum of remaining tokens
 in the token vault and total
 liquidity deposited across
 all strategies.

 Liquidity in token
 vault reserves

 token_vault.amount a Actual amount of tokens in
 the token vault reserves.

 Current liquidity in
 a strategy

 strategy.current_liquidity c Total amount of liquidity
 deposit in a strategy

 Total liquidity
 provider supply

 total_lp_supply - Total amount of liquidity
 provided by LPs for a
 vault

 Performance fee
 vault

 fee_vault fee This vault holds the
 performance fee earned.
 Each time a rebalance
 crank is called, vault
 calculates performance
 fee and mints
 corresponding lp token
 amount to fee_vault.

 fee_vault is owned by
 treasury address

 Total locked profit Last_updated_locked_profit - Total locked profit where it
 is updated every time we
 do a rebalancing

 Timestamp of last
 rebalancing run

 Last_report - Store the timestamp of the
 last rebalancing run

 Rate at which
 profit is unlocked

 Locked_profit_degradation - Rate at which the profit
 will be unlocked in % per
 second e.g. 0.1% of
 locked_profits released
 per second.

 Table 1: This table describes the state variables and their notations used in this paper

 6

 Operator describes the authorized wallet address that is only allowed to distribute funds into
 predefined protocols, it is not allowed to send liquidity to other places. The operator can only
 claim rewards and withdraw from predefined protocols to vault reserves, it is disallowed from
 withdrawing to external addresses.

 Strategy refers to the lending protocols that the vaults will connect or deposit into.

 Strategy Handler refers to the interface built to abstract all code that links the vault to the
 external lending platform to simplify handling.

 Rebalance Crank happens when an operator deposits to or withdraws from a lending
 protocol. Rebalancing is run once every few minutes, and the yield optimizer will claim yield
 from the various lending protocols after each run.

 Operation describes a generic action of interacting with the vaults, such as user depositing,
 user withdrawing, operator sending rebalance crank.

 Utilization rates refer to the ratio of borrowed amount to deposited amount in a lending
 pool. A 100% utilization rate means that all deposited funds in a pool has been lent out.

 4.2 Assertions
 Meteora Dynamic Vaults distributes liquidity to various lending protocols like Solend,
 Port-Finance, Tulip, Raydium and Apricot.

 To provide optimized yield while protecting the safety and liquidity of funds, any transfers in
 and out of the vaults must pass the following assertions:

 1) The keeper can only send rebalance cranks to distribute funds to predefined
 protocols. It cannot claim principal funds for itself, or send liquidity to external wallets.

 2) At any point in time, the Total Amount in Vault must equal or less than the summation
 of liquidity in token vault reserves and sum of liquidity distributed to the different
 lending protocols.

 vault.total_amount <= token_vault.amount + sum(liquidity_in_strategies)

 3) The vaults preserve the principal and earn yield; the virtual price of the Liquidity
 Provider (LP) token is always increased for every single operation as long as the
 strategies earn yield. Virtual price of LP is calculated by the total amount in vault
 divided by total LP supply.

 Virtual price LP = vault.total_amount/total_lp_supply

 When strategies earn yield, it will add to the vault.total_amount value while keeping
 total_lp_supply the same, thus increasing the virtual price of the LP.

 7

 4.3 Hermes - Meteora Dynamic Vaults Keeper Program
 In this section, we describe Hermes - our off-chain yield optimizer keeper program, diving
 into its algorithmic design for finding optimal yield allocations and the risk factors it helps to
 mitigate. Hermes contains the necessary program logic (monitoring and tracking of the
 lending pools) of the operator.

 4.3.1 Algorithm to find optimal yield allocations
 Annual Percentage Rate (APR) of lendings depends on a few factors: amount borrowed,
 amount deposited, interest rate model. The higher the amount borrowed, the higher the
 APR. When funds are deposited into a lending pool, borrowing interest will be shared
 amongst depositors, resulting in the decrease of deposit APR.

 The algorithm to search for optimal yield allocations begins by breaking liquidity to small
 portions (lines1-2). For each portion, we simulate deposits in all lending platforms and
 compare the APR after the simulated deposit (lines 4-8). We will then pick the platform with
 the highest APR for this portion and update the deposit amount on the platform in the
 simulation (lines 10-12). We repeat this until 100% of total liquidity is deposited in the
 simulation to find the optimum allocation (lines 5-12). By doing so, we are able to find the
 most optimized yield allocations amongst the changing APR values with each deposit and
 withdrawal.

 If the latest allocation differs from the last allocation by more than 0.1%, a rebalance crank is
 sent to withdraw or deposit into the lending protocols according to the latest allocation (lines
 14-16).

 # Off chain simulation
 1: portion ← x # x is minimally 100, set by admin
 2: deposit_amount ← vault.total_amount / portion
 3: last_allocation[] ← current allocation of vault.total_amount in each lending platform
 4: allocation[] ← track allocation after simulation to each lending platform
 5: FOR each portion
 6: FOR each platform
 7: Simulate deposit_amount to platform
 8: APR[platform] ← APR of platform after simulated deposit
 9: ENDFOR
 10: highest_APR_platform ← Select platform with the highest APR in APR[platform]
 11: allocation[highest_APR_platform] ← deposit_amount + allocation[highest_APR_platform]
 12: Update deposit_amount to platform
 13: ENDFOR

 # On Chain Rebalance crank
 14: IF diff(allocation[] , last_allocation[]) > 0.1% THEN
 15: Send rebalance crank to allocate funds according to allocation[]
 16: ENDIF

 Figure 2: The optimal yield allocation algorithm

 8

 4.3.2 Rebalancing Crank Mechanism
 This section describes the rebalance crank mechanism and calculations of how the vault
 total amount is updated after each rebalancing.

 Hermes will claim yield from the various lending protocols after each rebalancing run.
 Rebalancing is run once every few minutes and the yield collected is included in the vault
 total amount as illustrated below.

 We call state variables before the rebalance:
 - vault.total_amount : 𝑡

 1

 - token_vault.amount : 𝑎
 1

 - strategy.current_liquidity : 𝑐
 1

 And the state variables after the rebalance:
 - vault.total_amount : 𝑡

 2

 - token_vault.amount : 𝑎
 2

 - strategy.current_liquidity : 𝑐
 2

 Then the vault would know that the total accrued interest after rebalance is:
 𝑝𝑟𝑜𝑓𝑖𝑡 = (𝑐

 2
+ 𝑎

 2
) − (𝑐

 1
+ 𝑎

 1
)

 The vault will then update the total amount:
 𝑡

 2
= 𝑡

 1
+ 𝑝𝑟𝑜𝑓𝑖𝑡

 Or:
 𝑡

 2
= 𝑡

 1
+ (𝑐

 2
+ 𝑎

 2
) − (𝑐

 1
+ 𝑎

 1
)

 Rebalancing calculation illustration:
 Event 𝑎

 1
 𝑐

 1
 𝑎

 2
 𝑐

 2
 𝑡

 1
 𝑡

 2
 𝑝𝑟𝑜𝑓𝑖𝑡

 Before
 rebalancing

 10 20 - - 30 - -

 After
 rebalancing
 (10 token
 yield)

 10 20 10 20 + 10 =
 30

 30 40 10

 9

 4.3.3 Risk factors & mitigation
 Apart from executing the algorithm to find optimal yield allocations, our keeper program also
 has risks to consider before it can decide on the actual allocation. Risks are generally
 categorized into 2 types - Operation and lending risk.

 Operation Risk : Risks that are related to source code such as when a partner protocol or
 team has a program update, or when lending platforms are not well audited. In minor cases,
 the source code changes break the integration, users are unable to perform any vault
 withdrawal or deposits. In major cases, the vault program or lending protocols may be
 exploited, losing the tokens in the vaults.

 We implement a maximum allocation mechanism that the vault can deposit into each lending
 pool to mitigate this risk.

 All lending protocols' maximum allocation starts at 100%. We will assess them across a set
 of criteria which includes the existence of audits, open-source code, insurance funds, main
 token pools, program multisig / verified & non updatable status as well as the length of
 integration with Meteora. This set of criteria will eventually be governed by the DAO.

 For every criteria not met, we will reduce the maximum allocation allowed to the protocol
 according to this matrix:

 Criteria Audit Open-Source Official
 Insurance
 Funds?

 Main
 Pool

 Existing
 integration > 1
 month

 Program multisig / or
 Verified & Non
 Updatable

 Maximum allocation
 reduction, if not
 present

 20 30 20 10 10 20

 Hermes is not allowed to withdraw funds from the lending protocols to external wallets. In the
 event if Hermes is hacked, the hackers will only be able to control the flow of funds to and fro
 between the vaults and lending protocols; the principals are still safe in either of them.

 Lending Risk : This risk occurs when depositors are unable to withdraw their funds from the
 lending pools. This is caused when utilization rates of the reserves reach full capacity at
 100% where borrowed amount equals deposited amount, or when the amount of reserves
 remaining in the lending pools are less than the vault deposits. When this happens,
 depositors are unable to withdraw funds on demand.

 To avoid lending risks, we have developed the following mechanisms to protect principals:
 - Stretch allocations in multiple lendings to diversify and manage risk across them
 - Hermes consistently monitors utilization rates of each lending pool and is ready to

 withdraw funds whenever the threshold is exceeded. Current thresholds are set at
 80% - allowing us to participate in popular lending pools with higher utilization rates
 while still leaving a buffer for Hermes to withdraw funds when required.

 - Vaults always maintain a buffer in the lending reserve to allow Hermes buffer time to
 react for liquidity movements.

 Section 5 Case Studies covers real life examples of the above mechanisms in play and how
 it helped protect user funds.

 10

 4.4 Sandwich Attack Prevention
 The immediate release of profit generated to the LPs can result in opportunities for a
 Sandwich Attack as seen in the scenario below:

 Event Total amount in system LP supply

 Before rebalancing 100 100

 Attacker deposits 100 tokens 200 200

 After rebalancing (20 token yield) 220 200

 Attacker withdraws 100 LP 110 100

 If an attacker times their deposit before a rebalance and withdraws immediately once the
 rebalance runs, they will be able to maximise their profits through the Sandwich Attack.

 In the example above, the attacker had deposited 100 tokens just before rebalancing,
 obtaining 50% of the LP tokens (100 LP tokens in this case). After rebalancing happens,
 there is a yield of 20 tokens and the total amount of tokens is 220 in the system.

 Suppose we immediately release all 20 tokens of profits to LP and the attacker also
 withdraws his 50% share of the 100 LP tokens at this time, he would have taken away with
 him all 50% of the profits (10 tokens in this case) just for timing his deposits and withdrawals
 to the rebalancing runs.

 Sandwich attacks are unfair to legitimate users and protocols who have deposited their
 assets to earn yield. It is important to ensure that the genuine liquidity providers are
 rewarded and the attackers do not profit at their expense.

 Instead of distributing 100% of the yield generated by the lending platforms to the LPs
 immediately after rebalancing, the system will drip the yield to them across a pre-determined
 period of time. All earned profits from strategies are locked by default and will be subjected
 to a locked profit degradation rate where profit will be unlocked at a specified percentage per
 second.

 11

 4.4.1 Sandwich Attack Prevention Design
 When a user adds or removes liquidity, instead of using vault.total_amount to calculate the
 total lp to mint or burn, we use the get_unlock_amount f unction to calculate the

 value to use. 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑎𝑚𝑜𝑢𝑛𝑡

 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 _ 𝑡𝑖𝑚𝑒 − 𝑙𝑎𝑠𝑡 _ 𝑟𝑒𝑝𝑜𝑟𝑡

 𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑓𝑢𝑛𝑑 _ 𝑟𝑎𝑡𝑖𝑜 = 1 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑝𝑟𝑜𝑓𝑖𝑡 _ 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑣𝑎𝑢𝑙𝑡 . 𝑡𝑜𝑡𝑎𝑙 _ 𝑎𝑚𝑜𝑢𝑛𝑡 − 𝑙𝑎𝑠𝑡 _ 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _ 𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑝𝑟𝑜𝑓𝑖𝑡 𝑥 𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑓𝑢𝑛𝑑 _ 𝑟𝑎𝑡𝑖𝑜

 Using to calculate how much a user gets during withdrawal can prevent 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 _ 𝑎𝑚𝑜𝑢𝑛𝑡
 attackers from doing a sandwich attack.

 Potential attackers will not be able to get any of the yield gained if he were to withdraw his
 tokens immediately after rebalancing. He will also only gain a tiny fraction of the total if he
 withdraws within the next few minutes. This makes it unattractive to execute a sandwich
 attack since the yield earned is very small in this case.

 4.6 Performance Fees
 This section describes the performance fee we charge and its calculations. Fee is collected
 to the fee vault every time the operator sends a rebalance crank. The fee vault is controlled
 by the treasury and separate from the dynamic vaults. At this time of writing, we are currently
 charging 5% of profit as the performance fee.

 We define variables as follows:

 Before rebalance:
 - vault.total_amount : 𝑡

 1

 - lp_mint.total_supply: 𝑝
 1

 - virtual_price (value of lp token): 𝑣
 1

=
 𝑡

 1

 𝑝
 1

 After rebalance:
 - vault.total_amount : 𝑡

 2

 - lp_mint.total_supply: 𝑝
 1

 - virtual_price: 𝑣
 2

=
 𝑡

 2

 𝑝
 1

 We charge performance fee:
 𝑓𝑒𝑒 = 5% * (𝑡

 2
− 𝑡

 1
) = 0 . 05 * (𝑡

 2
− 𝑡

 1
)

 12

 Virtual price after fee:

 (1) 𝑣
 21

=
 𝑡

 2
− 𝑓𝑒𝑒

 𝑝
 1

 Vault does not send the token directly to the treasury token account (because the vault may
 not have enough liquidity), the vault will mint more lp tokens for fee_vault . Assuming vault
 mints more lp tokens, then the new virtual price: ∆ 𝑝

 (2) 𝑣
 22

=
 𝑡

 2

 𝑝
 1
+∆

 𝑝

 We ensure the virtual price in (1) and (2) are the same , so 𝑣
 21

= 𝑣
 22

 𝑡
 2
− 𝑓𝑒𝑒

 𝑝
 1

=
 𝑡

 2

 𝑝
 1
+∆

 𝑝

 Then we can calculate how many lp tokens is minted more for each rebalance crank:

∆
 𝑝

=
 𝑝

 1
* 𝑓𝑒𝑒

 𝑡
 2
− 𝑓𝑒𝑒

 Or

∆
 𝑝

=
 𝑝

 1
*(𝑡

 2
− 𝑡

 1
)

 4 * 𝑡
 2
+ 𝑡

 1

 5. Case Studies
 In this section, we will examine 2 real life case studies that we experienced in our beta
 testing phase.

 5.1 Mango Markets Exploit
 On 12th October 2022, an exploiter was able to drain funds of over 100M USD from MANGO
 via an oracle price manipulation. [1]

 Problem : Our dynamic vaults liquidity was affected by this exploit as MANGO is one of the
 lending platforms that we allocate assets to. The impact was limited as we were still in our
 Beta testing phase and imposed deposit limits to our users.

 Impact : 900,000 USDC was locked up in MANGO as the funds were drained before we
 could withdraw them in time. MANGO paid us back through their own treasury and we were
 able to recover our locked funds.

 Remarks : We were able to retrieve our funds through the existence of MANGO’s insurance
 funds. Furthermore, this exploit also highlighted the areas in our safety mechanisms where
 we can fortify and improve them to further mitigate similar risks.

 Details of the exploit from our POV here:
 https://docs.google.com/document/d/1uL_3mEuszihwMkRqaJQTwnfzu1zJNSEkNg4LzjnC8
 Rg/edit#heading=h.1gcsvpgzo4pt

 13

 5.2 Solend.fi USDH Exploit
 On 2nd Nov 2022, an exploiter inflated the price of the USDH stablecoin via an oracle attack
 on Saber and drained assets from Solend’s isolated pools i.e. Stable, Coin98, and Kamino,
 resulting in $1.26M in bad debt. [2]

 Problem : Although we did not support USDH assets, our vaults were exposed to this exploit
 as we have UXD assets in the Stable and Coin98 pools on Solend.

 Impact : Hermes was monitoring the utilization rates of the pools and detected the high
 utilization of (>80%) of both Stable and Coin98 pools. A withdrawal request was immediately
 sent and all UXD assets were withdrawn back to our vaults safely before the pools were
 drained.

 Fig 3: Keeper report of Solend utilization rate.

 Remarks : This safety mechanism helped us avoid the lock up of user funds in Solend as we
 were able to withdraw 100% of UXD liquidity from Solend back to our vaults, proving its
 efficacy.

 6. Dynamic Vaults as a Yield Layer in Solana
 We believe Meteora Dynamic Vaults will be the yield layer for all of Solana as it allows any
 protocol, including wallets, treasuries and Automated Market Makers (AMMs) to build on top
 of this layer to generate more returns for their Liquidity Providers (LPs).

 In this diagram, we can see the flow of liquidity into and out of the yield layer, through to the
 lending protocols and back to the vaults and users. Only one integration is needed to
 connect to the yield layer to access yield of the lending protocols.

 14

 Fig 4: Overview of Dynamic Yield Layer

 6.1 Increase utility of wallets, protocols & AMMs and DAOs
 As mentioned earlier, the challenges of optimized yield, fund safety and liquidity access are
 not unique to users, they also extend to protocols that store liquidity in their system such as
 wallets, protocols & AMM pools and DAO treasuries. In this section, we will describe their
 problems faced and understand how to increase their utility.

 Wallets contain assets for their users that they want to help them earn yield on. Protocols &
 AMMs have sizeable amounts of liquidity but scaling it is very inefficient. They rely heavily on
 liquidity mining to attract deposits. DAOs need to hold the treasury assets in an optimized
 and safe state.

 Meteora Dynamic Vaults allows any protocol, including wallets, treasuries and AMMs, to
 easily build on top of them to generate more returns for their Liquidity Providers (LPs),
 overcoming the challenges of optimized yield, safety and liquidity access with one
 integration. These protocols can directly deposit and withdraw assets via the APIs in our
 SDK.

 In addition, users who deposit into these protocols, integrated into our dynamic vaults, will be
 able to receive yield from the protocols, on top of the interest and LM rewards from the
 lending platforms. The added yield will significantly reduce LM as the primary driver of a
 protocol’s liquidity maintenance and growth.

 15

 6.2 AMM Case Study

 Currently, the vast majority of assets in AMMs are unutilized, as only a small portion of the
 assets is being constantly used for swaps. As a result, the yield generated is insufficient to
 attract LPs; continuous LM is needed to boost LP incentives instead, which is unsustainable.

 However, suppose the AMMs are built on top of the yield layer. In that case, the liquidity of
 the pools will be deposited in the dynamic vaults and reallocated to various lending platforms
 to generate additional yield for the LPs. With the added yield, we will be able to make our
 pools highly capital efficient and reduce the reliance on LM to sustain or grow the liquidity of
 the pools.

 Take an example of a USDC and USDT AMM stable pool being set up on top of the yield
 infrastructure.

 1. All the USDC/USDT tokens deposited in the AMM pool are immediately deposited
 into the USDC and USDT vaults in the infra layer.

 2. The USDC and the USDT vaults will each keep 10% of the liquidity in the vault as
 reserves for the connecting AMMs to withdraw or swap tokens.

 3. The remaining 90% of the tokens will be allocated to the various lending platforms
 integrated with the vaults. For instance, the USDC vault will distribute 90% of the
 USDC tokens in the vault across the pools in Port Finance, Solend and Mango to
 earn yield.

 4. The yield optimizer will monitor and re-adjust the liquidity allocation ratio across Port
 Finance, Solend, Francium, Tulip and Apricot once every few minutes to obtain the
 optimal yield for the LPs.

 The dormant tokens in the pools are now actively flowing and generating returns via the
 Yield Layer, making our pools extremely capital efficient.

 16

 We envision the dynamic vaults as the yield layer infrastructure of Solana that provides
 anyone with a robust yield layer to park and grow their assets.

 7. Conclusion

 In this paper, we shared about the key problems in managing assets and yield in a DeFI
 context, highlighting the 3 main challenges of optimized yield, funds security and liquidity
 access. We presented Meteora Dynamic Vaults - The Yield Layer for Solana, which aims to
 solve these challenges by seeking the most optimized yield for deposited assets through
 distributing liquidity into the various lending protocols and doing the heavy lifting of constant
 monitoring and fund rebalancing.

 The features of Meteora Dynamic Vaults include Hermes - our keeper that optimizes yield
 and executes risk management strategies to deposit or withdraw from lending protocols, our
 reward handler to claim yield and rewards to distribute to the LPs and stakers,

 Our design was made possible by leveraging on Solana’s speed, composability and low
 transaction fees to extend event monitoring benefits for our system. This system design is
 extendable to any chains that can support event monitoring.

 We envision Meteora Dynamic Vaults as the infrastructure that enables any protocol that
 stores liquidity (wallets, AMMs, DAOs etc.) to transform their idle funds into yield generating
 assets in a sustainable, safe and liquid manner.

 17

 References:
 [1]: Mango Markets Exploit:
 https://twitter.com/mangomarkets/status/1579979342423396352?lang=en
 [2]: Solend Exploit:
 https://twitter.com/solendprotocol/status/1587671511137398784?s=20&t=7H-bfCdfCUbI_W0
 pn5Gyww

 18

https://twitter.com/mangomarkets/status/1579979342423396352?lang=en

